Hexxcell Studio™
Hexxcell Studio™ is a comprehensive software framework that integrates solutions for monitoring, design and retrofit analysis of heat exchangers and their networks in a unified platform.
Hexxcell Studio™ incorporates the most advanced mathematical model available in industry for the simulation, design and optimisation of a multi–pass shell–and–tube heat exchanger undergoing crude oil fouling. It is also implemented in a user-friendly flowsheeting environment that provides a consistent, robust and flexible system for the solution of engineering heat transfer fouling problems at all stages, from R&D to operations support.
Hexxcell Studio™ has proven useful in assessing the economic impact of fouling, predicting its behaviour in the future, guiding operations to mitigate it and identifying retrofit design opportunities.











Under the bonnet – Advanced mathematical model
At the core of the Hexxcell Studio™ system, an advanced mathematical model based on technology originally developed at Imperial College London, allows to accurately calculate time-varying fouling rates as a function of local conditions in the heat exchanger. The model accounts for the complex interactions between thermal and hydraulic phenomena and equipment geometry.

Deployment in Industry – Easy to use environment
Implemented in a user-friendly flowsheeting environment with state-of-the-art numerical solution methods, Hexxcell Studio™ provides a consistent, robust and flexible system for the solution of engineering heat transfer fouling problems at all stages of the engineering workflow, from R&D to operations support.
A key benefit is the ability to consider and analyse, using consistent models and assumptions, the trade-offs between design activities and operational aspects. It provides a unified framework that helps preventing “silos” between company functions allowing easy sharing of assumptions, validations and developments between R&D, engineering design, operations and operations support functions.
Technical features
-
Thermal and hydraulic model: Distributed heat balances are written in cylindrical coordinate which makes it possible to overcome the thin slab approximation – often used in other models – accounting for curvature effects of the heat exchanger tubes on the heat flux.
-
Tube-side fouling: A moving boundary approach is used to capture the growth of the fouling layer over time at any given point across the tube length, the corresponding reduction in cross–sectional flow area. A fouling rate model used in a distributed way, allows calculating the local value of fouling resistance at each point along the exchanger length as opposed to an average value for the whole exchanger.
-
Shell-side fouling: Effects of fouling in the shell-side is taken into account, including growth on the tube outer surfaces and occlusion of geometrical clearances.
-
Geometry: The heat exchanger configuration is accounted for (e.g. number of tube–side passes, tube diameter and length, baffle spacing, pitch arrangement, etc.).
-
Physical properties: The variation of physical properties with temperature and space for both shell–side and tube–side fluids is taken into account. Different thermophysical property models/packages (including proprietary ones) can be used.
-
Ageing of deposits: an ageing model (Coletti et al., 2010) is implemented to describe the structural changes of the fouling deposit over time, hence its thermal conductivity.
Explore our solutions:
Advanced Analytics: Fouling Propensity Analysis™
Advanced analytics to unveil key correlations between operating parameters, crude slates and fouling behaviour

Equipment Design: Dynamic Retrofit Test™
A predictive approach to test performance of a proposed retrofit design

Advanced Monitoring and Predictive Maintenance
•Assessment of fouling costs
•Monitor refinery pre-heat trains performance
•Best cleaning scheduling
•Optimise flow splits
•HEX bypass management
